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Abstract

The interpretation of the F-number as a transport resistance to groundwater flow and to
radionuclide transport is investigated for a 1D model representation of heterogeneous
fractured rock divided into blocks with definable averaged value parameters
characterising those blocks.

It is concluded that the physical interpretation of the F-number as a resistance in 1D
advection-dispersion transport models can be generalised under certain conditions to
models that can cope with the intrinsic variability of flow parameters along the transport
pathway, an example of these models being the multiple-leg models. The constraints
imposed upon these conditions is that both the F-ratio and the longitudinal dispersion
are additive. Outside of this domain of validity, the F-number looses its physical
significance as a resistance of the rock to groundwater flow and also to radionuclide
transport. This is shown by the calculations using decaying species or when the
chemistry also varies along the transport pathway.

In summary, in 1D multiple-leg transport models, the F-number is a transport resistance
offered by the rock to the groundwater flow, but it does not represent a resistance to
radionuclide transport. The F-number allows one to make use of site characterisation
data to reduce the range of uncertainties in the flow parameters extracted from field data
and hydrogeological calculations in the performance assessment.

It is also concluded that it is necessary to develop a new class of transport models that
explicitly take into account the intrinsic spatial variability of rock properties.

Investigation of the impact of spatial variability of parameters on the consequences
delivered by this class of transport models is therefore an important task in relation to
uncertainty and sensitivity analyses of the performance assessment of geological
repositories.



Abstract (Swedish)

Tolkningen av F-talet som ett transportmotstånd mot grundvattenflödet (Darcy-flödet)
och också mot radionuklidtransport, har undersökts för endimensionella modeller av
nuklidtransport i geologiskt heterogen och sprucken berggrund. Konceptuellt består
berggrunden av enskilda block som karaktäriseras av vissa parametrar med definierade
medelvärden.

Vi visar att den fysikaliska tolkningen av F-talet som ett transportmotstånd för
endimensionella transportmodeller av advektion-dispersions typ kan generaliseras under
vissa villkor till transportmodeller som tar hänsyn till den naturliga variabiliteten av
flödesparametrarna längs radionuklidernas transportsträckor som t.ex. modeller med
flera transportsträckor kopplade i serier. De ovannämnda villkoren är att både F-talet
och den longitudinella dispersionen är additiva parametrar. Utanför denna
validitetsdomän förlorar F-talet dess betydelse som ett kvantitativt definierbart mått på
berggrundens motstånd gentemot Darcy-flödet.

De ovannämnda slutsatserna dras med hjälp av numeriska experiment där man har
simulerat transporten av kontaminanter som inte sönderfaller och också av radionuklider
både med och utan hänsyn till rumsvariabilitet av flödes-och transport parametrar längs
transportsträckorna.

Sammanfattningsvis gäller det att F-talet är, för endimensionella modeller, ett
kvantitativt mått på det motstånd mot Darcy-flödet som berget utgör, men att det inte
lämpar sig som ett moståndsmått för radionuklidtransport.

Flödesparametrar som härleds från fältdata och hydrogeologiska beräkningar från en
platsundersökning är alltid behäftade med osäkerheter. Den fysikaliska tolkningen av
F-talet som ett motstånd mot Darcy-flödet gör det principiellt möjligt att reducera
effekten av dessa osäkerheter i utvärderingar av potentiella förvaringsplatser och därtill
kopplade säkerhets- och känslighetsanalyser.

Det står också klart att det är nödvändigt att utveckla en ny typ av transportmodeller
som på ett explicit sätt kan ta hänsyn till den naturliga variabiliteten hos de fysiska och
kemiska egenskaperna hos berggrunden längs nuklidernas transportsträckor.

Den påverkan av parametrarnas rumsvariabilitet på konsekvenserna som fås som
resultat av simuleringar med denna typ av transportmodeller är därför av stor betydelse
inom säkerhets-och känslighetsanalyser i utvärderingen av ett djupförvar.
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1. Introduction

In fractured heterogeneous media like granite, radionuclide migration is dominated by
advective solute transport in groundwater circulating in the fracture system. In this
system, surface sorption and matrix diffusion are two phenomena that play an important
role in the retardation of the nuclides. The impact of surface sorption and matrix
diffusion is partially limited by the fractures’ flow-wetted surface area, as this area
defines the total surface available for sorption (reversible or irreversible). It is also
through this area that nuclides can migrate into the rock matrix by diffusion. Within the
pore water of the matrix the nuclides are trapped for longer or shorter times and are
therefore not directly available for advective transport by water in the fractures.

The migration of radionuclides in the network of fractures is usually estimated with the help
of 1D advection-dispersion models (AD models), which are also able to treat radioactive
decay chains and interactions between the nuclides and the surrounding environment. A
representative code of this class of AD transport models is CRYSTAL (Robinson and
Worgan, 1992), which has been extensively used in SKI’s Project-90 (1991) and SITE-94
(1996). The input parameters used in CRYSTAL come in part from field data and in part as
soft data extracted from hydrogeological modelling of groundwater flow in fractured media.

The CRYSTAL model requires two types of input parameters: flow and transport parameters.
Flow parameters are related to the movement of the groundwater in the system of fractures
and can be subdivided into two groups of equivalent parameters given by two numbers: the
F-ratio and the Peclet number. The F-ratio represents a measure of the capacity for retardation
in the rock, i.e., a resistance the rock offers to groundwater flow. The Peclet number is the
ratio between advective to dispersive groundwater transport. The transport parameters contain
information related to the physical processes and the chemical interactions between the
nuclides and the host rock. An important transport parameter in CRYSTAL is given by a
lumped parameter, the distribution coefficient.

One disadvantage of the transport codes commonly used nowadays is that they cannot handle
the impact of the spatial variability of flow and transport parameters, arising from rock
heterogeneity. There are two possible ways of solving this problem. The first one is, as in our
case, to extend the CRYSTAL code to include such a capability. The second one is to develop
a new transport code for heterogeneous media. With these two alternatives in mind, the aim of
this report is two-fold:

• To investigate the impact of the F-ratio on the prediction of consequences of
radionuclide migration when the spatial variability of flow parameters is taken into
account and compare it to situations in which variability is ignored.

• To extend the above investigation by including the spatial variability of transport
parameters, in our case the spatial variability of the distribution coefficient.

To address those two aims we use a model with multiple legs here, which is based on
the CRYSTAL model.

The first aim is the main target of this work. It is related to how and to what extend we
can use information from site characterisation (as in, for instance, how averaging of data
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is done in the reduction of 3-D data to a one-dimensional form) in transport models to
reduce the uncertainty introduced by different sources.

The second aim is of relevance if one is to examine the capabilities needed by a new
transport model. Do we need a more flexible way of treating spatial variability of
parameters than the one that a multiple-leg CRYSTAL model can offer? And if so,
why?1

For a multiple-leg model we need to give a precise definition of how the F-ratio should
be interpreted. Therefore the definition of the F-ratio as a resistance will be used in the
sequel in the sense that physical resistances are additive. If in a multiple-leg model the
impact resulting from summing several partial F-ratios is the same as the impact
resulting from the F-ratio of the corresponding single-leg model, we will say in such a
case that the F-ratio is a resistance. In the opposite situation the F-ratio concept does not
work as a resistance.

In Section Two we introduce a background to the heterogeneity of fractured media and
consider its implications for the modelling of radionuclide transport. In this section we
motivate the suggested conceptual approach. In Section Three, the computational
approach used to address the above mentioned questions is presented together with the
choice of case studies and input data common to all calculations. The results are
presented and discussed in Section Four for the flow problem (impact of F-ratio on
radionuclide release in the presence of variability of flow parameters) and in Section
Five they are presented and discussed for the fully coupled transport problem (that is,
the impact of the F-ratio on radionuclide release is examined for the case of
simultaneous variability of the flow and transport parameters). The summary and the
conclusions are presented in Section Six, which is followed by references and
appendixes.

                                               
1 Another aspect of those capabilities is the easy of handling time-dependent parameters, which is not
addressed in this report.
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2. A conceptual approach to transport modelling in
heterogeneous fractured media

2.1 Introduction

Strong evidence exists (Neretnieks et al., 1987) that solute transport in fractured media
is dominated by channelling. The solutes move in a 3 dimensional network of fractures
with variable apertures, lengths and orientation in space. Some of those fractures can be
highly conductive (channels) in which the transport is dominated by advection, whereas
in others groundwater can flow only with difficulty. In the 1D model conceptualisation,
this network is represented by an equivalent fracture or system of plane parallel
fractures, a model that is an extension of well working and very useful models for
porous media. In these 1D model formulations like CRYSTAL, the migration

Figure 1  Schematic representation of heterogeneous fractured media for three different
blocks characterised by groups of fractures with similar properties.

path is represented by a single transport length L, representing an effective mean
transport length.

CRYSTAL´s  analytical solution does not allow one to examine the implicit variability
of parameters and the heterogeneity along the transport pathway. One possible approach
by which to introduce these effects is to consider a conceptual model in which we
assume that the rock is divided into blocks, each representing a class with more or less
definable characteristics, such as the intensity and orientation of the fractures, the net
connectivity, the total flow-wetted surface area, etc, (Fig.1). Assume also that for each
class (block), it is possible to extract average values for the flow parameters. In this
representation each class i is a block with a given length Li . Assume also that the
transport length L for the entire migration path in the rock is divided into several

1

2

3

Repository

well
Heterogeneous
fractured media
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segments L1 , L2 etc., one for each block, such that their sum is equal to L. Now, it will
be possible to vary the flow and transport parameters along the transport pathway by
using CRYSTAL to model each segment Li separately, where each segment is
characterised by its own parameters. Because the segments are connected in series, the
output from one simulation using CRYSTAL, say for the segment Lj , is used as source
term for the next simulation L j+1.

2.2 Flow parameters and the role of the F-ratio

Every single rock fracture is geometrically characterised by its length, aperture and
width. Due to channelling only a fraction of the fracture surface is wetted (fig.2).

Figure 2  Schematic representation of a fracture with its flow-wetted surface area.

The flow-wetted surface area enters as an input parameter in certain models for
migration in fractured media. In the CRYSTAL model (Robinson and Worgan, 1992)
the flow-wetted surface area is related to the volume of rock. This parameter is a
multiplicative factor in the so-called F-ratio:

where, F [s/m] is the F-ratio , a [m2/m3] is the flow-wetted surface area per volume of
rock, L [m] is the migration path length and q [m/s] is the Darcy velocity. Physically, F
represents a measure of geosphere resistance to groundwater flow. The spatial
variability of the flow-wetted surface along the transport path of radionuclides makes F
a spatially dependent entity.

Now, assuming that the Darcy flow, q, and the flow-wetted surface area, a, or their ratio
are kept constant along the transport pathway, it follows from Eqn. 1 that the F-ratio F
for the total pathway L will be equal to the sum of Fi´s , the F-ratio of each segment i:

For the conceptual model discussed above, does Eqn.2 imply that the F-ratio for the
total path length L is still a representative number for the transport resistance of the rock
to groundwater flow? If it is, the radionuclide releases obtained by our transport model

 Flow-wetted surface area

∑=
i iFF )2(

F aL q= ( )1

Fracture plane
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should be quite insensitive to variations of q, a and L as long as their relationship is
such that the F-ratio has the same value. In such case, the additivity of the F-ratio
implies that it should be possible through site characterisation, to extract the partial
F-ratios Fi, for each region, and use the sum as an effective F-ratio for the rock as a
whole, instead of using them in transport models that can cope with spatial variability.

As pointed out before this is the first question addressed by this work. To confirm or
reject this possibility we assume here that:

• The longitudinal dispersion is proportional to the transport length in each block i.e.
the Peclet number is the same for all blocks.

• The transport parameters are also the same for all blocks i.e. there is no variability
along the pathway for these parameters within each block.

The second question is the usefulness of the F-ratio parameter in transport models for
heterogeneous media, when we allow all parameters and not only the flow parameters to
vary spatially. Again we assume that the F-ratio is still such that it is equal to the sum of
the F-ratios of the segments, and that the Peclet number is constant in accordance with
our conceptual model. But we do not put other restrictions on the variations on the
transport parameters along the transport pathway, i.e., flow and transport parameters are
allowed to vary simultaneously. In one case study (see Section 4.1.2), there will be a
deviation from the assumption of a constant Peclet number for reasons to be discussed
later.
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3. The Computational approach

3.1 Introduction

To allow variability in the parameters along the transport pathway, i.e. to introduce
variability in some of the properties from fracture to fracture (or block to block), we
segment the transport length L into a certain number of shorter distances L1, L2, etc.,
each of which represents a new fracture or groups of fractures with the same
characteristics. The CRYSTAL model was then used to construct a multiple-leg model,
which allows one to simulate the transport in this set of fractures, which is viewed as
being connected in series. This approach has been used for Monte Carlo simulations
(Andersson et al., 1997), (Pereira et al., 1997) to introduced parameter variability along
the transport pathway in probabilistic calculations of radionuclide transport.

In this report the same idea of segmentation is used to address the interpretation and the
impact of the F-ratio on model predictions. In a first set of case studies comprising
cases A0, A1 and A2, the transport length L is divided in two segments (double-leg case)
for a certain set of input parameters that correspond to variations of some of the
deterministic far-field case studies in SITE-94 (1996). This study is generalised in the
second set of case studies, cases B0 - B3, in which the transport length L is divided into
ten legs. The results of the simulations obtained by segmentation are then compared
with those of simulations with a single path length L. For all cases the sum of the
F-ratios corresponding to each segment is equal to the F-ratio for the non-segmented
(single-leg) path. This procedure allows us to draw conclusions about the role and
impact of the F-ratio as a measure of the resistance of the rock to groundwater flow and
to radionuclide transport.

3.2 Specification of case studies

For the sake of completeness the system of partial differential equations used in the
CRYSTAL model is given bellow,
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where, Rn is the retardation attributable to sorption on the fracture walls and Rn
m  the

retardation due to the matrix; these retardation coefficients are given respectively by
θδθρ /a)1(K1R m

n,d
m

n −+=  and mmm
n,d

m
n /)1(K1R θθρ −+= . The subscript n

denotes the nth radionuclide in the chain. Cn(x,t) [moles/m3] is the concentration of
radionuclides in the fracture water, t [years] the time, u [m/year] the velocity of water in
the fracture, x [m] the distance along the pathway, D [m2/year] the longitudinal
dispersion, Dm [m2/year] the matrix diffusivity, θ m the matrix porosity, θ the rock mass
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porosity, a [m-1] the specific flow-wetted area per volume of the rock mass, δ [m] the
”depth” of surface sorption, Kd,n [m

3/kg] the distribution coefficient, )t,,x(C m
n ω

[moles/m3] the concentration of radionuclides in the rock matrix pore water, ω [m] the
distance perpendicular to the fracture, δ  [m] the maximum penetration depth in the ω
direction and λ [(year)-1] the radioactive decay constant.

In the choice of  the case variations, the following should be kept in mind:

• The F-ratio for the simulation of the total path length L is equal to the sum of
F-ratios for the different blocks (see equation 2).

• The Peclet number is constant along the transport pathway, (i.e. the longitudinal
dispersion must be proportional to the transport pathway length), unless  otherwise
stipulated.

• The impact of the F-ratio on the outcomes obtained by CRYSTAL as addressed by
the first aim of this work, is studied for constant transport parameters and only for
the double-leg model.

• The impact of the F-ratio on the consequences for the general case i.e. for the
simultaneous variation of flow and transport parameters is only analysed using the
ten-leg model.

There is one situation where the Peclet number is allowed to vary along the transport
pathway. The motivation for this will be given later when the outcome is discussed.

Regarding the near-field data necessary for the simulations, the only requirement is that
the same source term must be used in all simulations if one is to be able to compare the
results. We have used a pulse of constant amplitude (equal to 106 Bq/year) and with a
duration of 7.4x104 years in all calculations.

Fig. 3 shows a diagram of the cases considered and how they are calculated.

Figure 3  Scheme showing the choice of case studies for the double-leg and the ten-leg
models.

Case B3 (ten-leg)

Case A2 (double-leg)

Case A0 (double-leg)
Case A1 (double-leg)
Case B1 (ten-leg)
Case B2 (ten-leg)

- a and DL varia-
  tion from leg to leg
  (constant Peclet)
- Kd variation

- a  and DL variation
  from leg to leg
  (variable Peclet)
- Kd constant

- a  and DL variation
  from leg to leg
  (constant Peclet)
- Kd constant

Flow

Model

Flow and
Chemistry

∑=
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∑=
i iFF

∑=
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Table I shows a summary of the cases considered in the calculations. The parameters
that are not varied are taken from SITE-94 calculation cases. Some of the far-field
parameters used by the CRYSTAL model are always kept constant, see Table II.

Table I  Summary of case studies.

Case No. of
Legs

  Radioactive
      decay

Variation
in a

Variation
in DL

Variation
in Pe

Variation
in Kd

A0   2 Stable species Yes Yes No No

A1   2 Stable species Yes Yes No No

A2   2 Stable species Yes Yes Yes No

B1   10 Stable species Yes Yes No No

B2   10 Decaying species Yes Yes No No

B3   10 Decaying species Yes Yes No Yes

Tables 2, 3 and 4 in Appendix I, present the input data for the “double-leg” model (cases
A0, A1 and A2 respectively) and Table 5 the input data for the “ten-leg” model (cases
B1, B2, and B3). For the convenience of the reader these tables not only present the
parameters that vary from case to case, but also the constants shown in Table II.

Table II  Far-field parameters common to all case variations.

Parameter Value Unit

Fracture spacing, S 1.0 m

Penetration depth, Pdepth a) 5.0x10-2 ,  b) 5.0x10-1 m

Rock matrix porosity, gp 1.0x10-3 -

Diffusion coefficient in the pore

water of the rock matrix, Dm 9.5x10-4 m2/year

Sorption coefficient, Kd 0†, 1.0 m3/kg

a) Cases A0-A2.
b) Cases B1-B3.
† Only cases A0 and B2 have a zero distribution coefficient.

We illustrate the way the tables of input data should be read by taking Table 3 in
Appendix I as the starting point. Consider the case shown by the rows a1x, a2x and a3.
Row a3 gives the parameters corresponding to the single-leg case (with path length L)
to be simulated by CRYSTAL. Rows a1x and a2x give the input parameters for the first
and second pathways L1 and L2 , the two legs of which length sum to L. So rows a1x and
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a2x together represent one simulation. First the radionuclide transport through L1 is
simulated using the rectangular pulse of amplitude 106 Bq/years and a duration of
7.4x104 years as the source term and the result of this first simulation is then used as the
source term for the transport through the second pathway L2. In the analysis the result
obtained at the end of L2 , row a2, should, therefore, be compared with the one obtained
from row a3 (for L = L1 + L2  and for “single-leg” respectively).

Rows a1y and a2y define a new simulation, which is also to be compared with a3. The
pairs (a1x,a2x) and (a1y,a2y) represent two variations that to be compared with a3, a3
being the case whose F-ratio number is equal to the sum of the F-ratio of the pairs. In
the same way all rows starting with b in the same table, i.e. (b1x, b2x) and (b1y, b2y)
should be compared with b3.

All cases are based upon data from Table 15.2.12 of the SITE-94 report (1996). The
comment lines in the tables of the appendixes give the case labels used in the SITE-94
report.
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4. The impact of the F-ratio on radionuclide release
for spatially varying flow parameters

A test case was defined in which the path length L is divided into two equal segments in
length L1  and L2 . The input parameters (see Appendix I, Table 1) are also equal for
these two path lengths and therefore the outcomes of the simulation of the single
migration path and of the segmented path with two legs, should be the same. Figure 4
below shows the results. There is a good agreement between calculations for the single
and the double-leg cases.

Figure 4 The breakthrough curves for the simulations of a single path (single-leg
model) and the segmented path (double-leg model), result in equivalent breakthrough
curves.

In subsequent sections the results are presented in the following order: firstly, the
double-leg calculations, and secondly the ten-leg calculations. The outcomes to be
compared are: a) the peak releases and the time at which they occur and b) the overall
shape of the release rate curves as a function of time.

4.1 The double-leg model: Results and discussion

4.1.1 Variation of the flow-wetted surface area and longitudinal dispersion for
constant Peclet numbers −− Cases A0 and A1.

These double-leg calculations correspond to cases A0 and A1. The input data for the
two cases differ in the Kd parameters, which are zero for case A0 and 1.0 m3/kg for case
A1. The half-life is set to infinity, i.e., we simulate non-decaying species. The results of
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the simulations are summarised in Table III (case A0 ) and IV (case A1). These tables
also include the results of the calculations with a non-segmented path length L, which
are labelled “single leg”. The two columns on the right show the peak releases and the
time at which they occur.

Tables III and IV show that the differences between the peak releases for the single and
double-leg simulations are small. In all cases changing the position of leg 1 with that of
leg 2, i.e., taking for example the simulations of the two legs in the order (s1x, s2x)
instead of the reversed (s2x,s1x) (which corresponds to (s1y, s2y) in our notation) has
no impact on the breakthrough curves.

The shapes of the breakthrough curves from the set of calculations of case A0 are very
close to each other as shown in Figures 5 and 6. These figures illustrate a case with a
low Peclet number (9.0) and a high Peclet number (100) respectively. The fact that the
Kd  parameter is zero is reflected in the breakthrough curves which are almost equal to
the source term.

The shapes of the breakthrough curves from case A1 a set of calculations in which Kd is
equal to 1.0 m3/kg (Figures 7 and 8 and Figures 1-4 in Appendix II) are very close to
each other. Figures 7 and 8 illustrate cases with a low Peclet number (9.0) and with very
high Peclet numbers (100). Even for the highest Peclet number, the additivity property
of the F-ratio leads to very similar breakthrough curves.

Hence, the F-ratio can be interpreted as a resistance offered by the rock to groundwater
flow.

Table III Case A0. Input data and results for the double-leg simulations with varying
flow-wetted surface area and longitudinal dispersion for a stable nuclide. The
distribution coefficient is zero. DL is proportional to the leg length.

Parameters Consequences
Id F

[s/m]
a
[m-1]

L
[m]

Q
[m/year]

DL

[m2/year]
Pe
-

Peak
[Bq/year]

Time
[year]

s1x Leg1 1.05 x 1011 4.0 x 10-3 100 1.2 x 10-4 2.8 x 102 9.0 1.0 x 106 1.4 x 104

s2x Leg2 2.00 x 1012 1.9 x 10-2 400 1.2 x 10-4 1.1 x 103 9.0 1.0 x 106 1.6 x 104

s1y Leg1 2.00 x 1012 1.9 x 10-2 400 1.2 x 10-4 1.1 x 103 9.0 1.0 x 106 1.6 x 104

s2y Leg2 1.05 x 1011 4.0 x 10-3 100 1.2 x 10-4 2.8 x 102 9.0 1.0 x 106 1.6 x 104

s3 Single
-leg

2.10 x 1012 1.6 x 10-2 500 1.2 x 10-4 1.4 x 103 9.0 1.0 x 106 1.4 x 104

t1x Leg1 0.8 x 1013 1.01 x 10-2 100 4.0 x 10-5 2.0 x 100 100 1.0 x 106 1.4 x 104

t2x Leg2 1.2 x 1013 3.80 x 10-2 400 4.0 x 10-5 8.0 x 100 100 1.0 x 106 1.6 x 104

t1y Leg1 1.2 x 1013 3.80 x 10-2 400 4.0 x 10-5 8.0 x 100 100 1.0 x 106 1.4 x 104

t2y Leg2 0.8 x 1013 1.01 x 10-2 100 4.0 x 10-5 2.0 x 100 100 1.0 x 106 1.6 x 104

t3 Single
-leg

2.0 x 1013 5.07 x 10-2 500 4.0 x 10-5 1.0 x 101 100 1.0 x 106 1.4 x 104

†  The data in rows s3 and t3 correspond to those of cases FF0 and FF4 of the SITE-94 project.
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Table IV  Case A1. Input data and results for the double-leg simulations with varying flow-
wetted surface area and longitudinal dispersion for a stable nuclide. The distribution coefficient
is equal to 1.0 m3/kg. DL is proportional to the leg length.

Parameters Consequences
Id F

[s/m]
a
[m-1]

L
[m]

Q
[m/year]

DL
††

[m2/year]
Pe
-

Peak
[Bq/year]

Time
[year]

a1x Leg1 1.05 x 1011 4.0 x 10-3 100 1.2 x 10-4 2.8 x 102 9.0 7.3 x 105 8.6 x 104

a2x Leg2 2.00 x 1012 1.90 x 10-2 400 1.2 x 10-4 1.1 x 103 9.0 1.5 x 104 2.2 x 106

a1y Leg1 2.00 x 1012 1.90 x 10-2 400 1.2 x 10-4 1.1 x 103 9.0 1.5 x 104 1.8 x 106

a2y Leg2 1.05 x 1011 4.0 x 10-3 100 1.2 x 10-4 2.8 x 102 9.0 1.5 x 104 2.2 x 106

a3† Single
-leg

2.10 x 1012 1.60 x 10-2 500 1.2 x 10-4 1.4 x 103 9.0 1.4 x 104 2.2 x 106

b1x Leg1 0.50 x 1011 3.96x 10-3 200 5.0 x 10-4 1.0 x 105 0.5 9.7 x 105 7.4 x 104

b2x Leg2 1.50 x 1011 7.93 x 10-3 300 5.0 x 10-4 1.5 x 105 0.5 8.6 x 105 7.4 x 104

b1y Leg1 1.50 x 1011 7.93 x 10-3 300 5.0 x 10-4 1.5 x 105 0.5 9.0 x 105 7.4 x 104

b2y Leg2 0.50 x 1011 3.96x 10-3 200 5.0 x 10-4 1.0 x 105 0.5 8.6 x 105 7.4 x 104

b3† Single
-leg

2.00 x 1011 6.34 x 10-3 500 5.0 x 10-4 2.5 x 105 0.5 8.7 x 105 7.4 x 104

c1x Leg1 0.8 x 1013 1.01 x 10-2 100 4.0 x 10-5 2.0 x 100 100 5.8 x 103 1.6 x 107

c2x Leg2 1.2 x 1013 3.80 x 10-2 400 4.0 x 10-5 8.0 x 100 100 3.5 x 103 4.0 x 107

c1y Leg1 1.2 x 1013 3.80 x 10-2 400 4.0 x 10-5 8.0 x 100 100 5.0 x 103 2.5 x 107

c2y Leg2 0.8 x 1013 1.01 x 10-2 100 4.0 x 10-5 2.0 x 100 100 3.8 x 103 4.0 x 107

c3† Single
-leg

2.00 x 1013 5.07 x 10-2 500 4.0 x 10-5 1.0 x 101 100 3.6 x 103 4.0 x 107

d1x Leg1 0.80 x 1011 6.34x 10-3 200 5.0 x 10-4 4.8 x 103 10.4 7.8 x 105 8.6 x 104

d2x Leg2 1.20 x 1011 6.34 x 10-3 300 5.0 x 10-4 7.2 x 103 10.4 4.8 x 105 8.6 x 104

d1y Leg1 1.20 x 1011 6.34 x 10-3 300 5.0 x 10-4 7.2 x 103 10.4 6.5 x 105 8.6 x 104

d2y Leg2 0.80 x 1011 6.34x 10-3 200 5.0 x 10-4 4.8 x 103 10.4 4.8 x 105 8.6 x 104

d3† Single
-leg

2.00 x 1011 6.34 x 10-3 500 5.0 x 10-4 1.2 x 104 10.4 4.8 x 105 8.6 x 104

e1x Leg1 0.77 x 1010 1.21 x 10-2 200 9.95 x 10-3 1.88 x 104 0.30 1.0 x 106 7.4 x 104

e2x Leg2 3.00 x 1010 3.16 x 10-2 300 9.95 x 10-3 2.82 x 104 0.30 9.9 x 105 6.3 x 104

e1y Leg1 3.00 x 1010 3.16 x 10-2 300 9.95 x 10-3 2.82 x 104 0.30 9.9 x 105 7.4 x 104

e2y Leg1 0.77 x 1010 1.21 x 10-2 200 9.95 x 10-3 1.88 x 104 0.30 9.9 x 105 6.3 x 104

e3† Single
-leg

3.77 x 1010 2.38 x 10-2 500 9.95 x 10-3 4.70 x 104 0.30 9.9 x 105 7.4 x 104

f1x Leg1 0.30 x 1010 9.51 x 10-3 200 2.0 x 10-2 2.0 x 102 50.0 9.9 x 105 7.4 x 104

f2x Leg2 1.30 x 1010 2.75 x 10-2 300 2.0 x 10-2 3.0 x 102 50.0 9.6 x 105 7.4 x 104

f1y Leg1 1.30 x 1010 9.51 x 10-3 300 2.0 x 10-2 3.0 x 102 50.0 9.9 x 105 7.4 x 104

f2y Leg2 0.30 x 1010 2.75 x 10-2 200 2.0 x 10-2 2.0 x 102 50.0 9.6 x 105 6.3 x 104

f3† Single
-leg

2.30 x 1010 2.92 x 10-2 500 2.0 x 10-2 5.0 x 102 50.0 9.3 x 105 7.4 x 104

†  The data of the rows a3, b3, c3, d3, e3 and f3 correspond to that of cases FF0, FF37, FF4, FF17, FF41
   and FF6 of the SITE-94 project.
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Figure 5  The breakthrough curves for the single and double-leg models (s3) and  (s2x
and s2y) respectively for a low Peclet number and with the distribution coefficient equal
to zero.

Figure 6  The breakthrough curves for the single and double-leg models (t3) and (t2x
and t2y) respectively for the case of a high Peclet number and with the distribution
coefficient equal to zero.                                                                                                                           
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Figure 7  The breakthrough curves for the single and the double-leg models (a3)
and  (a2x and a2y) respectively for a low Peclet number and with the
distribution coefficient equal to one.

Figure.8  The breakthrough curves for the single and double-leg models (c3)
and (c2x and c2y) respectively for the case of a high Peclet number and with the
distribution coefficient equal to one.
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4.1.2 The impact of the F-ratio with the Peclet numbers varying along the path −−
Case A2.

In this section we use the double-leg model to illustrate the consequences of departure
from the assumption that the longitudinal dispersion of different legs adds to the value
of the longitudinal dispersion for the single-leg model. The aim is to motivate why we
need to use the additivity assumption for the longitudinal dispersion throughout the
calculations.

The Peclet number gives the ratio between characteristic times for the diffusive and
advective processes:

where q [m/year] is the Darcy velocity, L [m] is the transport length, 2 [-] is the flow
porosity and DL [m2/year] is the longitudinal dispersion coefficient. If the longitudinal
dispersions are not additive, the Peclet number is no longer the same for the single-leg
model and the multiple-leg model. This will influence the outcome of the simulations
in such a way that it can balance or reinforce the impact of the F-ratio, as will be shown
by the results.

Table V shows the input data and the results. The half-life was set to infinity, i.e., we
simulate a non-decaying species. The reader should note that the case given in row g
(single-leg), i.e., the simulation for the total path length L, has one far-field parameter
which is different of that of case FF0 from SITE-94. This is the longitudinal dispersion,
which is 1.25 x 105 m2/year instead of 1.4 x 103 m2/year. The former value is the mean
value for the longitudinal dispersions of the two legs, which are now different.

The Table V shows that for simulations (g1,g2) and (g1x, g2x), there is a discrepancy
between the peak releases of more than one order of magnitude compared to case g
(single-leg), even though all cases have the same total F-ratio. Figure 5 in Appendix II
shows that the breakthrough curves are clustered into two groups. Case g (single-leg)
together with cases g2y and g2z forms one cluster with a peak release of roughly 7.0 x
105 Bq/year, while cases g2 and g2x form another cluster with a peak release equal to
1.5 x 104 Bq/year.

Because we have departed from the assumption that the longitudinal dispersion should
be proportional to the lengths of the two legs, we face the question: what DL value
should we use for the corresponding single-leg model? The value of DL that was chosen,
was the mean value for the two legs, as pointed out before. But, even if the above choice
of DL value for the single-leg model is arbitrary, the nature of the discrepancy cannot be
removed by making another choice. Suppose, for instance, that one was able to tune the
choice of DL value for the single-model in such a way that the peak releases for the
simulations given by rows g2 and g2x in Table V were almost equal to that for row g,
i.e., by the single-leg model. Then the value given in row g should be approximately
equal to 1.5x104 Bq/year instead of 6.8 x 105 Bq/year and the peak releases given by
rows g2y and g2z would differ considerably from those given by the single-leg model.

(4)LDqLPe θ=
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Table V  Case A2. Input data and results for the double-leg simulations with flow-
wetted surface area, longitudinal dispersion and Peclet numbers varying along the
transport pathway.

Parameters Consequences
Id F

[s/m]
a
[m-1]

L
[m]

Q
[m/year]

DL

[m2/year]
Pe
[-]

Peak
[Bq/year]

Time
[year]

g1 Leg1 1.05 x 1011 4.0 x 10-3 100 1.2 x 10-4 2.5 x 105 0.01 9.9 x 105 7.4 x 106

g2 Leg2 2.00 x 1012 1.9 x 10-2 400 1.2 x 10-4 1.4 x 103 6.9 1.5 x 104 1.6 x 106

g1x Leg1 2.00 x 1012 4.0 x 10-3 400 1.2 x 10-4 1.4 x 103 6.9 1.5 x 104 1.6 x 108

g2x Leg2 1.05 x 1011 1.9 x 10-2 100 1.2 x 10-4 2.5 x 105 0.01 1.5 x 104 1.6 x 108

g1y Leg1 1.05 x 1011 4.0 x 10-3 100 1.2 x 10-4 1.4 x 103 1.7 8.3 x 105 7.4 x 104

g2y Leg2 2.00 x 1012 1.9 x 10-2 400 1.2 x 10-4 2.5 x 105 0.04 7.1 x 105 7.4 x 104

g1z Leg1 2.00 x 1012 1.9 x 10-2 400 1.2 x 10-4 2.5 x 105 0.04 8.8 x 105 7.4 x 104

g2z Leg2 1.05 x 1011 4.0 x 10-3 100 1.2 x 10-4 1.4 x 103 1.7 7.1 x 105 7.4 x 104

g† Single
-leg

2.01 x 1012 1.6x 10-2 500 1.2 x 10-4 1.25 x 105 0.1 6.8 x 105 8.5 x 104

† The data in this row correspond to the FF0 case, with exception of the longitudinal dispersion, which is
the arithmetic mean of that of legs 1and 2.

We conclude that for case A2, even if the sum of the F-ratios for the sets of simulations
using the double-leg model is equal to the F-ratio of the single-leg model, we do not
obtain close results. The fact that the longitudinal dispersions are not proportional to the
length of the legs leads to very distinct breakthrough curves with peak releases that can
differ by more than one order of magnitude.

Hence, the F-ratio can no longer be interpreted (in the context of the double-leg model)
as a resistance offered by the rock to groundwater flow, though F is still equal to the
sum of the partial Fi

´s. Or, expressed in other words, the additivity property of the F-
ratio does not lead to similar breakthrough curves. This conclusion motivates the
assumption of using a constant Peclet number along the transport pathway in this work,
i.e., the longitudinal dispersion must be proportional to the transport pathway length.

4.2 The ten-leg model: Results and discussion

4.2.1 Stable species −− Case B1

From now on we will only use an extension of the double-leg model obtained by
increasing the number of legs to 10. The input data for and the results of this model
pertaining to the case B1 are shown in Table VI below. The radioactive decay is not
considered, i.e., we have a stable species. The longitudinal dispersions in the ten-leg
model are proportional to the path length of each leg. This assumption means that
longitudinal dispersion of the equivalent “single-leg” model is equal to the sum of the
longitudinal dispersions for all legs:
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Equation 5 expresses the assumed additivity of dispersions, which, together with Eqn. 6

results in equivalent breakthrough curves for the single-leg model and the ten-leg model
(figure 9), showing that also in this case the formulations of the flow problem are
equivalent and the F-ratio can be interpreted as being the resistance offered by the rock
to groundwater flow.

Table VI  Case B1. Input data and results for ten-leg simulations with varying flow-
wetted surface area. Stable species.

Id F
[S/m]

a
[m-1]

L
[m]

Q
[m/year]

DL

[m2/year]
Pe
[-]

Peak
[Bq/year]

Time
[year]

h1 Leg1 1.40 x 1011 8.88 x 10-2 60 1.2 x 10-3 1.7x 102 8.6 x 101 5.67 x 105 8.6 x 104

h2 Leg2 2.40 x 1011 2.03 x 10-1 45 1.2 x 10-3 1.3 x 102 8.6 x 101 1.89 x 105 1.4 x 105

h3 Leg3 4.00 x 1011 3.71 x 10-1 41 1.2 x 10-3 1.1 x 102 8.6 x 101 5.02 x 104 2.9 x 105

h4 Leg4 1.00 x 1011 9.51 x 10-2 40 1.2 x 10-3 1.1 x 102 8.6 x 101 3.98 x 104 4.0 x 105

h5 Leg5 1.00 x 109 1.23 x 10-2 31 1.2 x 10-3 8.7x 101 8.6 x 101 3.91 x 104 4.0 x 105

h6 Leg6 8.00 x 1011 6.66 x 10-1 40 1.2 x 10-3 1.1x 102 8.6 x 101 1.22 x 104 1.2 x 105

h7 Leg7 3.10 x 1011 1.82 x 10-1 65 1.2 x 10-3 1.8x 102 8.6 x 101 8.69 x 103 1.6 x 106

h8 Leg8 1.00 x 1010 1.59 x 10-2 48 1.2 x 10-3 1.3 x 102 8.6 x 101 8.38 x 103 1.9 x 106

h9 Leg9 9.90 x 1010 5.07 x 10-2 60 1.2 x 10-3 1.7x 102 8.6 x 101 7.84 x 103 1.6 x 106

h10 Leg10 1.10 x 1011 5.44 x 10-2 70 1.2 x 10-3 2.0x 102 8.6 x 101 7.15 x 103 1.8 x 106

h11 Single
-leg

2.10x 1012 1.60 x 10-1 500 1.2 x 10-3 1.4 x 103 8.6 x 101 6.74 x 103 1.8 x 106

∑=
i LiL DD )5(

)6(∑=
i iFF
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Figure 9  Ten-leg calculations with varying flow-wetted surface area compared with
the equivalent single-leg model. The calculations assume a stable species.

4.2.2 Decaying species −− Case B2

What will happen if one introduces decaying species? To assess this, we made
deterministic simulations based on data from case B1 given in Table VI (see also Table
5 in Appendix I) but with Kd and T1/2 as given in Table VII.

In a variant of the ten-leg simulation, the results of which are shown in Fig. 10, we use a
radionuclide with a half-life equal to 7.38x103. The input data are equal to that of Table
VI, with the exception of the half-life as mentioned above. The results now disagree by
eight orders of magnitude. As in the previous cases, the Kd parameter is equal to 1.0
[m3/kg ], which is rather high. Nevertheless in the cases of stable species it had no
influence on the differences between the ten-leg model and the single-leg model.

Increasing the half-life of the species by one order of magnitude (to 7.38x104), but
keeping the  Kd equal to 1.0 m3/kg, results in a disagreement of two orders of magnitude
(Fig. 12). Decreasing the Kd by one order of magnitude to 0.1 m3/kg, reduced the
discrepancy between the two models to about one-half an order of magnitude (Fig. 11).
Finally, with Kd equal to 0.1 m3/kg and T1/2 equal to 7.38x103 the disagreement
increases to more than two orders of magnitude (Fig. 13). The results of these variations
are summarised in Table VII.
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Table VII Case B2. Results of parameter variations for single and ten-leg simulations
with varying flow-wetted surface area for stable and decaying species.

Id† Kd

[m3/kg]
T ½

[year]
             Single-leg               Ten-leg

Peak
[Bq/year]

Time

[year]
Peak
[Bq/year]

Time

[year]

Figure

nr.

1 1.0   4    ¥ 6.74 x 103 1.8 x 106 7.15 x 103 1.8 x 106   9

2 1.0 7.4 x 103 1.27 x 10-5 1.4 x 105 1.11 x 103 1.6 x 106   10

3 0.1 7.4 x 104 1.95 x 104 1.6 x 105 6.66 x 104 2.5 x 105   11

4 1.0 7.4 x 104 2.05 x 101 4.0 x 105 4.17 x 103 1.6 x 106   12

5 0.1 7.4 x 103 9.59 x 101 1.0 x 105 4.88 x 104 2.1 x 105   13

6 0 7.4 x 103 9.98 x 105 1.4 x 104 9.93 x 105 2.5 x 104   6‡‡

† Here the data set of Table VI is used with different values for the half-life and Kd.
‡‡ Appendix II.

It is clear that the F-ratios do not represent a resistance for the transport problem
simulated by the ten-leg model if the distribution coefficient is different from zero and
the half-live of the nuclide has a finite value (the case with a distribution coefficient
equal to zero is illustrated in Figure 6 of Appendix II). Indeed, the additivity property of
the F-ratio does not lead to similar breakthrough curves for the single-leg and ten-leg
model. In other words, the F-ratio is a resistance offered by the rock to the groundwater
flow, but not a resistance to radionuclide transport, which is also confirmed in Section
5.2 where the chemistry is allowed to vary along the transport pathway.
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Figure 10  Ten-leg calculations with varying flow-wetted surface area and
longitudinal dispersion compared with the equivalent single-leg model. In this
calculation the Kd value of the decaying species is equal to 1.0 m3/kg as in the
previous calculation. Note that the y-scale has been extended to very low values to
include the single-leg model breakthrough curve.

Figure 11  Ten-leg calculations with varying flow-wetted surface area and longitudinal
dispersion compared with the equivalent single-leg model. In this calculation the Kd

value of the decaying species is as in the previous one equal to 1.0 m3/kg but the
half-life has been increased by one order of magnitude.
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Figure 12  Ten-leg calculations with varying flow-wetted surface area and longitudinal
dispersion compared with the equivalent single-leg model. In this calculation the Kd

value had been decreased by one order of magnitude to 0.1 m3/kg.

Figure 13  Ten-leg calculations with varying flow-wetted surface area and longitudinal
dispersion compared with the equivalent single-leg model.
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5. The impact of the F-ratio on radionuclide release
for simultaneous variations in the flow and transport
parameters

5.1 Introduction

In Section Four we addressed the impact of the F-ratio whenever one only considers the
spatial variability of the flow parameters that enter in the transport model. The goal was
to determine the conditions of validity for the interpretation of the F-ratio for a
multiple-leg model as a transport resistance of the rock to the groundwater movement.
And in its sequence the possibility of using information from site characterisation to
reduce the uncertainties of the flow parameters needed for the transport calculations.

In this section we deal with the fully coupled model with the goal now being to study
the impact of the F-ratio in simulations subjected to simultaneous variability of both
flow and transport parameters. Are there any significative differences in the results, in
between using a fully coupled model that takes the intrinsic variability of all parameters
into account (multiple-leg model) and a model that cannot cope with that variability
(single-leg model)?

5.2 The fully coupled transport model −− Case B3

In the previous section the Kd parameter was assumed to be constant along the transport
pathway. The variation in the mineralogy along the pathway makes it necessary to
include Kd variations from block to block. The input data used to make simulations for
this case (Table VIII) are the same as those shown in Table VI, apart from a difference
related to the distribution coefficients. These were allowed to vary from 1x10-4 to 0.1
m3/kg. It is not, therefore, obvious which Kd one should use for the single-leg model for
comparison purposes. Thus we have used both the mean and the median of the Kd

values of the ten legs.

The results are displayed in Fig. 14, showing that the single-leg model can be either
conservative or optimistic, depending upon the Kd used (Table IX). For median values
we obtain a pessimistic estimate of the peak release, while the use of the mean value
results in a slightly optimistic estimation. The shape of the breakthrough curve for the
ten-leg model differs considerably from the mean and median breakthrough curves of
the single-leg model.
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Table VIII  Case B3. Input data for 10-leg simulations with varying flow-wetted surface area, longitudinal dispersion
and sorption coefficient. Decaying species, with T1/2 = 7.38 x 104 years.

Id F
[S/m]

a
[m-1]

L
[m]

Q
[m/year]

DL

[m2/year]
Pe
[-]

Kd
[m3/kg]

Peak
[Bq/year]

Time
[year]

i1 Leg1 1.4 x 1011 8.88 x 10-2 60 1.2 x 10-3 1.7x 102 8.6 x 101 1.0 x 10-2 9.3 x 105 7.3 x 104

i2 Leg2 2.4 x 1011 2.03 x 10-1 45 1.2 x 10-3 1.3 x 102 8.6 x 101 5.0 x 10-2 7.5 x 105 7.4 x 104

i3 Leg3 4.0 x 1011 3.71 x 10-1 41 1.2 x 10-3 1.1 x 102 8.6 x 101 1.0 x 10-3 7.2 x 105 7.4 x 104

i4 Leg4 1.0 x 1011 9.51 x 10-2 40 1.2 x 10-3 1.1 x 102 8.6 x 101 1.1 x 10-1 6.9 x 105 7.4 x 104

i5 Leg5 1.0 x 109 1.23 x 10-2 31 1.2 x 10-3 8.7x 101 8.6 x 101 1.0 x 10-4 6.8 x 105 7.4 x 104

i6 Leg6 8.0 x 1011 6.66 x 10-1 40 1.2 x 10-3 1.1x 102 8.6 x 101 5.0 x 10-1 8.6 x 104 2.2 x 105

i7 Leg7 3.1 x 1011 1.82 x 10-1 65 1.2 x 10-3 1.8x 102 8.6 x 101 2.0 x 10-2 7.5 x 104 2.2 x 105

i8 Leg8 1.0 x 1010 1.59 x 10-2 48 1.2 x 10-3 1.3 x 102 8.6 x 101 2.6 x 10-2 7.4 x 104 2.2 x 105

i9 Leg9 9.9 x 1010 5.07 x 10-2 60 1.2 x 10-3 1.7x 102 8.6 x 101 2.7 x 10-3 7.4 x 104 2.2 x 105

i10 Leg10 1.1 x 1011 5.44 x 10-2 70 1.2 x 10-3 2.0x 102 8.6 x 101 7.1 x 10-2 6.9 x 104 2.5 x 105

i11a Single
-leg

2.1x 1012 1.60 x 10-1 500 1.2 x 10-3 1.4 x 103 8.6 x 101 7.9 x10-2 † 2.9 x 104 1.6 x 105

i11b Single
-leg

2.1x 1012 1.60 x 10-1 500 1.2 x 10-3 1.4 x 103 8.6 x 101 2.3 x 10-2  ‡ 1.5 x 105 1.0 x 105

† This value is the mean of the Kd values for the ten legs.
‡  This value is the median of the Kd values for the ten legs
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Table IX  Case B3. Résumé of the results obtained from calculations with
input data from Table VIII.

Model Id Kd [m
3/kg] Peak [Bq/year] Time [year]

Ten-leg i10 variable† 6.9 x 104 2.5 x 105

i11a Mean 2.9 x 104 1.6 x 105Single-leg

i11b Median 1.5 x 105 1.0 x 105

† These variations in Kd are taken based upon the data set of Table VI. T1/2 = 7.38 x 104

years.

Figure 14  Ten-leg calculations with varying flow-wetted surface area, longitudinal
dispersion and Kd. The equivalent single-leg model is displayed for comparison.

It is clear that the F-ratio of a multiple-leg model in the case of simultaneous variation
of flow and transport parameters is not a resistance to radionuclide transport. Maybe, for
the set of parameters used here, the differences in peak values are relatively small, but
the resulting shapes of the single-leg model breakthrough curves result in dramatic
differences between the tails of those curves and that of the ten-leg model curve.
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6. Summary and conclusions

A large number of deterministic calculations have been made to study the impact of the
F-ratio on the calculated results for radionuclide transport in the geosphere. The object
of the investigation is to examine the additivity of the F-ratio and the consequent
interpretation of the sum of F-ratios - for different paths connected in series - as a
transport resistance for groundwater flow. Ultimately its importance is related to the
treatment of 3D data from site characterisation and its reduction to effective flow
parameters to be used in 1D transport models for the performance assessment (the first
of the aims within this work) and also to examine the capabilities required for the next
generation of PA transport codes.

To attain our goal, a multiple-leg model was set up, based upon the one-dimensional
CRYSTAL transport model. From transport calculations performed with CRYSTAL
using a single transport pathway, we know that the F-ratio can be interpreted as a
transport resistance to groundwater flow. If we want to incorporate the intrinsic spatial
variability of parameters in a model, the question arises of whether the F-ratio is still a
transport resistance. If so, the resistance offered by the different legs of, for instance a
multiple-leg code, should sum to the resistance for the equivalent single-model, i.e., F
should also be additive for such a model. The only way to vary the parameters along the
transport pathway using CRYSTAL is to set up a multiple-leg model where each leg is
representative of a characteristic rock block with its own properties given by averaged
parameters.

It is known from transport calculations of migration in heterogeneous fractured rock
using 1D codes like CRYSTAL that roughly speaking three important groups of
parameters are involved, two of them dealing with the “flow problem” and the third
with the chemical interaction of the radionuclides with the host rock. The first two
groups are given by the F-ratio and the Peclet number and the third by surface or/and
matrix retardation (in general using the linear retention coefficient Kd ). This
information was used in this work to formulate the different cases needed to analyse the
impact of the F-ratio in multiple-leg models.

Two variants of the multiple-leg model are used in the calculations: a double-leg model
and a ten-leg model. The results of these two models are compared with the results for
an equivalent single-leg model.

From the calculations it was verified that the F-ratio can still be interpreted as a
transport resistance for stable species if the F-ratio is additive and if an extra condition
is imposed on the longitudinal dispersion. This condition indicates that the longitudinal
dispersion should also be an additive parameter, i.e., the longitudinal dispersion for each
of the different legs of the multiple-leg model should sum to the longitudinal dispersion
for the equivalent single-leg model. This last condition is necessary, but not sufficient.
Indeed the longitudinal dispersions for the different legs should also be proportional to
the path lengths. The above conclusion is valid for 1D formulations of transport models
with a mathematical structure akin to that of CRYSTAL, i.e., advective-dispersive-
-reactive models. From this conclusion it follows that, assuming the above conditions, it
is possible to use site characterisation to extract very useful information regarding flow
parameters that can be used for 1D models.
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The second goal of this report was to examine the impact of the F-ratio on the results of
the fully coupled transport model. From the calculations it can be concluded that for
decaying species, even considering the additivity of longitudinal dispersion, the F-ratio
is not a good representation of the “total” resistance in a multiple-leg model. Or, in
other words, whenever heterogeneity is taken into account in the multiple-leg transport
models, the F-ratio is a transport resistance for the groundwater flow, but not a transport
resistance for solute mass transport. Indeed it is shown that for the fully coupled model,
deterministic calculations with single-leg models can come up with either optimistic or
pessimistic results depending on the choice of parameters, the Kd value being
particularly sensitive for the CRYSTAL model if one compares with the results of the
multiple-leg model. The shape of breakthrough curves is also very different from each
other. The non-ability of the single-leg transport model to cope with spatial variability
has consequences in probabilistic calculations also. Even if reasons other than those
examined in this report come into play, the calculations done for the second part of this
report reinforce the previous conclusions from probabilistic calculations, namely that,
for Monte Carlo calculations (Pereira et al., 1997), new tools which can cope with
intrinsic spatial variability of parameters are needed.
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Appendix I

            Table 1  Test case. The input parameters for the double-leg model are equal to those of the single-leg model
                          with the exception of the transport distances of legs 1 and 2.

Parameters
Id a

[m-1]
L
[m]

Q
[m/year]

DL

[m2/year]
ggf

[-]
Dm

[m2/year]
Pdepth

[m]
S
[m]

ggp

[-]
Kd

[m3/kg]

v1x Leg1 1.6 x 10-2 250 1.2 x 10-4 1.4 x 103 5.0 x 10-6 9.5 x 10-3 5.0 x 10-1 1.0 1.0 x 10-3 1.0
v2x Leg2 1.6 x 10-2 250 1.2 x 10-4 1.4 x 103 5.0 x 10-6 9.5 x 10-3 5.0 x 10-1 1.0 1.0 x 10-3 1.0

v3 Single-leg 1.6 x 10-2 500 1.2 x 10-4 1.4 x 103 5.0 x 10-6 9.5 x 10-3 5.0 x 10-1 1.0 1.0 x 10-3 1.0
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Table 2  Case A0. Input parameters for the double-leg calculations with constant Peclet numbers.

Parameters

Id F
[s/m]

a
[m-1]

L
[m]

Q
[m/year]

DL
††

[m2/year]
Pe
[-]

ggf

[-]
Dm

[m2/year]
Pdepth

[m]
S
[m]

ggp

[-]
Kd
[m3/kg]

s1x Leg1 1.05 x 1011 4.00 x 10-3 100 1.2 x 10-4 2.8 x 102 9.0 5.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0
s2x Leg2 2.00 x 1012 1.90 x 10-2 400 1.2 x 10-4 1.1 x 103 9.0 5.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

s1y Leg1 2.00 x 1012 1.90 x 10-2 400 1.2 x 10-4 1.1 x 103 9.0 5.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0
s2y Leg2 1.05 x 1011 4.00 x 10-3 100 1.2 x 10-4 2.8 x 102 9.0 5.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

s3 Single
-leg

2.10 x 1012 1.60 x 10-2 500 1.2 x 10-4 1.4 x 103 9.0 5.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

t1x Leg1 0.80 x 1013 1.01 x 10-2 100 4.0 x 10-5 2.0 x 100 100 2.0 x 10-5 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0
t2x Leg2 1.20 x 1013 3.80 x 10-2 400 4.0 x 10-5 8.0 x 100 100 2.0 x 10-5 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

t1y Leg1 1.20 x 1013 3.80 x 10-2 400 4.0 x 10-5 8.0 x 100 100 2.0 x 10-5 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0
t2y Leg2 0.80 x 1013 1.01 x 10-2 100 4.0 x 10-5 2.0 x 100 100 2.0 x 10-5 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

t3 Single
-leg

2.00 x 1013 5.07 x 10-2 500 4.0 x 10-5 1.0 x 101 100 2.0 x 10-5 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0
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Table 3  Case A1. Input parameters for the double-leg calculations with constant Peclet numbers.

Parameters

Id F

[s/m]

a

[m-1]

L

[m]

Q

[m/year]

DL
††

[m2/year]

Pe

[-]

ggf

[-]

Dm

[m2/year]

Pdepth

[m]

S

[m]

ggp

[-]

Kd

[m3/kg]

a1x Leg1 1.05 x 1011 4.00 x 10-3 100 1.2 x 10-4 2.8 x 102 9.0 5.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0
a2x Leg2 2.00 x 1012 1.90 x 10-2 400 1.2 x 10-4 1.1 x 103 9.0 5.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

a1y Leg1 2.00 x 1012 1.90 x 10-2 400 1.2 x 10-4 1.1 x 103 9.0 5.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0
a2y Leg2 1.05 x 1011 4.00 x 10-3 100 1.2 x 10-4 2.8 x 102 9.0 5.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

a3† Single
-leg

2.10 x 1012 1.60 x 10-2 500 1.2 x 10-4 1.4 x 103 9.0 5.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

b1x Leg1 0.50 x 1011 3.96x 10-3 200 5.0 x 10-4 1.0 x 105 0.5 2.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0
b2x Leg2 1.50 x 1011 7.93 x 10-3 300 5.0 x 10-4 1.5 x 105 0.5 2.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

b1y Leg1 1.50 x 1011 7.93 x 10-3 300 5.0 x 10-4 1.5 x 105 0.5 2.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0
b2y Leg2 0.50 x 1011 3.96 x 10-3 200 5.0 x 10-4 1.0 x 105 0.5 2.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

b3† Single
-leg

2.00 x 1011 6.34 x 10-3 500 5.0 x 10-4 2.5 x 105 0.5 2.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

c1x Leg1 0.80 x 1013 1.01 x 10-2 100 4.0 x 10-5 2.0 x 100 100 2.0 x 10-5 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0
c2x Leg2 1.20 x 1013 3.80 x 10-2 400 4.0 x 10-5 8.0 x 100 100 2.0 x 10-5 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

c1y Leg1 1.20 x 1013 3.80 x 10-2 400 4.0 x 10-5 8.0 x 100 100 2.0 x 10-5 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0
c2y Leg2 0.80 x 1013 1.01 x 10-2 100 4.0 x 10-5 2.0 x 100 100 2.0 x 10-5 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

c3† Single
-leg

2.00 x 1013 5.07 x 10-2 500 4.0 x 10-5 1.0 x 101 100 2.0 x 10-5 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

d1x Leg1 0.80 x 1011 6.34 x 10-3 200 5.0 x 10-4 4.8 x 103 10.4 2.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0
d2x Leg2 1.20 x 1011 6.34 x 10-3 300 5.0 x 10-4 7.2 x 103 10.4 2.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0
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Table 3, ctd.

d1y Leg1 1.20 x 1011 6.34 x 10-3 300 5.00 x 10-4 7.20 x 103 10.4 2.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0
d2y Leg2 0.80 x 1011 6.34x 10-3 200 5.00 x 10-4 4.80 x 103 10.4 2.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

d3† Single
-leg

2.00 x 1011 6.34 x 10-3 500 5.00 x 10-4 1.20 x 104 10.4 2.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

e1x Leg1 0.77 x 1010 1.21 x 10-2 200 9.95 x 10-3 1.88 x 104 0.30 3.6 x 10-4 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0
e2x Leg2 3.00 x 1010 3.16 x 10-2 300 9.95 x 10-3 2.82 x 104 0.30 3.6 x 10-4 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

e1y Leg1 3.00 x 1010 3.16 x 10-2 300 9.95 x 10-3 2.82 x 104 0.30 3.6 x 10-4 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0
e2y Leg1 0.77 x 1010 1.21 x 10-2 200 9.95 x 10-3 1.88 x 104 0.30 3.6 x 10-4 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

e3† Single
-leg

3.77 x 1010 2.38 x 10-2 500 9.95 x 10-3 4.70 x 104 0.30 3.6 x 10-4 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

f1x Leg1 0.30 x 1010 9.51 x 10-3 200 2.00 x 10-2 2.00 x 102 50.0 4.0 x 10-4 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0
f2x Leg2 1.30 x 1010 2.75 x 10-2 300 2.00 x 10-2 3.00 x 102 50.0 4.0 x 10-4 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

f1y Leg1 1.30 x 1010 9.51 x 10-3 300 2.00 x 10-2 3.00 x 102 50.0 4.0 x 10-4 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0
f2y Leg2 0.30 x 1010 2.75 x 10-2 200 2.00 x 10-2 2.00 x 102 50.0 4.0 x 10-4 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

f3† Single
-leg

2.30 x 1010 2.92 x 10-2 500 2.00 x 10-2 5.00 x 102 50.0 4.0 x 10-4 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0
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Table 4  Case A2. Input parameters for the double-leg calculations with varying Peclet numbers.

Parameters

Id F
[s/m]

a
[m-1]

L
[m]

q
[m/year]

DL

[m2/year]
Pe
[-]

ggf

[-]
Dm

[m2/year]
Pdepth

[m]
S
[m]

ggp

[-]
Kd

[m3/kg]

g1 Leg1 1.05 x 1011 4.0 x 10-3 100 1.2 x 10-4 2.5 x 105 0.01 5.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0
g2 Leg2 2.00 x 1012 1.9 x 10-2 400 1.2 x 10-4 1.4 x 103 6.9 5.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

g1x Leg1 2.00 x 1012 4.0 x 10-3 400 1.2 x 10-4 1.4 x 103 6.9 5.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0
g2x Leg2 1.05 x 1011 1.9 x 10-2 100 1.2 x 10-4 2.5 x 105 0.01 5.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

g1y Leg1 1.05 x 1011 4.0 x 10-3 100 1.2 x 10-4 1.4 x 103 1.7 5.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0
g2y Leg2 2.00 x 1012 1.9 x 10-2 400 1.2 x 10-4 2.5 x 105 0.04 5.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

g1z Leg1 2.00 x 1012 1.9 x 10-2 400 1.2 x 10-4 2.5 x 105 0.04 5.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0
g2z Leg2 1.05 x 1011 4.0 x 10-3 100 1.2 x 10-4 1.4 x 103 1.7 5.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

g Single
-leg

2.01 x 1012 1.6 x 10-2 500 1.2 x 10-4 1.25 x 105 † 0.1 5.0 x 10-6 9.5 x 10-4 5.0 x 10-2 1.0 1.0 x 10-3 1.0

† It corresponds to FF0 in SITE-94, but the longitudinal dispersion is the mean of those for legs 1 and 2.
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Table 5  Case B1. Input parameters for the ten-leg calculations with constant Peclet numbers.

Parameters

Id F
[S/m]

a
[m-1]

L
[m]

q
[m/year]

DL

[m2/year]
Pe
[-]

ggf

[-]
Dm

[m2/year]
Pdepth

[m]
S
[m]

ggp

[-]
Kd

[m3/kg]

h1 Leg1 1.40 x 1011 8.88 x 10-2 60 1.2 x 10-3 1.7x 102 8.6 x 101 5.0 x 10-6 9.5 x 10-4 5.0 x 10-1 1.0 1.0 x 10-3 1.0
h2 Leg2 2.40 x 1011 2.03 x 10-1 45 1.2 x 10-3 1.3 x 102 8.6 x 101 5.0 x 10-6 9.5 x 10-4 5.0 x 10-1 1.0 1.0 x 10-3 1.0
h3 Leg3 4.00 x 1011 3.71 x 10-1 41 1.2 x 10-3 1.1 x 102 8.6 x 101 5.0 x 10-6 9.5 x 10-4 5.0 x 10-1 1.0 1.0 x 10-3 1.0
h4 Leg4 1.00 x 1011 9.51 x 10-2 40 1.2 x 10-3 1.1 x 102 8.6 x 101 5.0 x 10-6 9.5 x 10-4 5.0 x 10-1 1.0 1.0 x 10-3 1.0
h5 Leg5 1.00 x 109 1.23 x 10-2 31 1.2 x 10-3 8.7x 101 8.6 x 101 5.0 x 10-6 9.5 x 10-4 5.0 x 10-1 1.0 1.0 x 10-3 1.0
h6 Leg6 8.00 x 1011 6.66 x 10-1 40 1.2 x 10-3 1.1x 102 8.6 x 101 5.0 x 10-6 9.5 x 10-4 5.0 x 10-1 1.0 1.0 x 10-3 1.0
h7 Leg7 3.10 x 1011 1.82 x 10-1 65 1.2 x 10-3 1.8x 102 8.6 x 101 5.0 x 10-6 9.5 x 10-4 5.0 x 10-1 1.0 1.0 x 10-3 1.0
h8 Leg8 1.00 x 1010 1.59 x 10-2 48 1.2 x 10-3 1.3 x 102 8.6 x 101 5.0 x 10-6 9.5 x 10-4 5.0 x 10-1 1.0 1.0 x 10-3 1.0
h9 Leg9 9.90 x 1010 5.07 x 10-2 60 1.2 x 10-3 1.7x 102 8.6 x 101 5.0 x 10-6 9.5 x 10-4 5.0 x 10-1 1.0 1.0 x 10-3 1.0
h10 Leg10 1.10 x 1011 5.44 x 10-2 70 1.2 x 10-3 2.0x 102 8.6 x 101 5.0 x 10-6 9.5 x 10-4 5.0 x 10-1 1.0 1.0 x 10-3 1.0

h11 Single
-leg

2.10x 1012 1.60 x 10-1 500 1.2 x 10-3 1.4 x 103 8.6 x 101 5.0 x 10-6 9.5 x 10-4 5.0 x 10-1 1.0 1.0 x 10-3 1.0
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Appendix II

Fig. 1  Double-leg model results (b2x and b2y) together with the corresponding
single-leg model result (b3). The single-model result corresponds to the reference case
FF37 of SITE-94, but with a different source term
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Fig. 2  Double-leg model results (d2x and d2y) together with the corresponding
single-leg model result (d3). The single-model result corresponds to the reference case
FF4 of SITE-94, but with a different source term.
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Fig. 3  Double-leg model results (e2x and e2y) together with the corresponding
single-leg model result (e3). The single-model results corresponds to the reference case
FF17 of SITE-94, but with a different source term.
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Fig. 4  Double-leg model results (f2x and f2y) together with the corresponding single-
leg model result (f3). The single-model result corresponds to the reference case FF6 of
SITE-94, but with a different source term.
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Fig. 5  Double-leg model results (g2, g2x, g2y and g2z) together with the corresponding
single-leg model result (g). The single-model result corresponds to the reference case
FF0 in SITE-94, but with a different source term.
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Fig.6  Ten-leg calculations for zero distribution coefficient but with varying flow-wetted
surface area and longitudinal dispersion compared with the equivalent single-leg
model.

Ten-leg model. Decaying species. Case B2.
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